End-to-End Jet Classification of Boosted Top Quarks with CMS Open Data

20 May 2021, 15:52
13m
Short Talk Online Computing Artificial Intelligence

Speaker

Bjorn Burkle (Brown University (US))

Description

We describe a novel application of the end-to-end deep learning technique to the task of discriminating top quark-initiated jets from those originating from the hadronization of a light quark or a gluon. The end-to-end deep learning technique combines deep learning algorithms and low-level detector representation of the high-energy collision event. In this study, we use low-level detector information from the simulated CMS Open Data samples to construct the top jet classifiers.
To optimize classifier performance we progressively add low-level information from the CMS tracking detector, including pixel detector reconstructed hits and impact parameters, and demonstrate the value of additional tracking information even when no new spatial structures are added.
Relying only on calorimeter energy deposits and reconstructed pixel detector hits, the end-to-end classifier achieves an AUC score of 0.975$\pm$0.002 for the task of classifying boosted top quark jets.
After adding derived track quantities, the classifier AUC score increases to 0.9824$\pm$0.0013, serving as the first performance benchmark for these CMS Open Data samples.

Primary authors

Bjorn Burkle (Brown University (US)) Michael Andrews (Carnegie-Mellon University (US)) Shravan Sunil Chaudhari Dr Davide Di Croce (University of Alabama) Prof. Sergei Gleyzer (University of Alabama) Ulrich Heintz (Brown University (US)) Meenakshi Narain (Brown University (US)) Manfred Paulini (Carnegie-Mellon University (US)) Dr Emanuele Usai (Brown University)

Presentation materials

Proceedings

Paper