The R&D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100 μm and 130 μm active thickness, for planar sensors, and 130 μm for 3D sensors, the thinnest ones ever produced so far. Prototypes of hybrid modules have been bump-bonded to the RD53A readout chip. The RD53A readout chip...
In 2018 the XENON1T experiment set the most stringent constraints on the interaction cross-section between nucleons and Weakly Interacting Massive Particles. A crucial role for the inference of such results is played by the accurate modelling of the detector response.
We report about a new calibration test with a $^{37}$Ar source diluted into the liquid xenon, performed in the XENON1T...
Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence of 1-5_1015 1 MeV...
The CMS Collaboration is preparing to build replacement endcap calorimeters for the HL-LHC era. The new high-granularity calorimeter (HGCAL) is, as the name implies, a highly-granular sampling calorimeter with approximately six million silicon sensor channels (~1.1cm^2 or 0.5cm^2 cells) and about four hundred thousand channels of scintillator tiles readout with on-tile silicon...
The DARWIN observatory will be the ultimate xenon-based detector for WIMP dark matter complemented by a rich science program of other rare event searches. It will operate 40t of natural liquid xenon in a time projection chamber, combining light- and charge-signal measurements for background reduction and an optimal energy resolution. We aim at reducing all background sources for the WIMP...
A dual gain trans-impedance amplifier and an ASIC providing two 160 MHz ADC channels, gain selection, and data compression will be installed. The noise increase in the APDs, due to radiation-induced dark current, will be contained by reducing the temperature at which ECAL is operated. The trigger decision will be moved off-detector and performed by powerful and flexible FPGA processors,...
HGCAL, presently being designed by CMS to replace the endcap for the High Luminosity LHC, require extremely challenging specifications for the front-end electronics: high dynamic range, low noise, high accuracy time information and low power consumption as well as the need to select and transmit trigger information with a high transverse and longitudinal granularity.
HGCROV-V2 is the second...
Detectors based on Chemical Vapor Deposition (CVD) diamond have been used successfully in beam conditions monitors in the highest radiation areas of the LHC. Future experiments at CERN will to accumulate an order of magnitude larger fluence. As a result, an enormous effort is underway to identify detector materials that will operate after fluences of >10^{16}/cm^2.
Diamond is one candidate...
DEAP-3600 is a tonne-scale, liquid argon (LAr) experiment searching for Weakly Interacting Massive Particles (WIMPs), which are a leading candidate for dark matter. The detector is located at SNOLAB in Sudbury, Ontario, and comprises 3279 kg of LAr as a scintillator, viewed by 255 photomultiplier tubes (PMTs). While DEAP is optimized for detecting WIMPs at recoil energies on the order of 10...
We currently developed a new front-end electronics for a liquid argon time projection chamber (LAr-TPC) detector, which has been developed for neutrino oscillation and nuclear decay search experiments.
We developed the electronics (LTARS 2018) to have a wide dynamic range for input charge up to 1600 fC and a function to output a signal with an appropriate time constant for signals having...
We propose an algorithm, deployable on a highly-parallelized graph computing architecture, to perform rapid reconstruction of charged-particle trajectories in the high energy collisions at the Large Hadron Collider and future colliders. We use software emulation to show that the algorithm can achieve an efficiency in excess of 99.95% for reconstruction with good accuracy. The algorithm can be...
A simple inexpensive read-out system has been developed for an RPC based muon imaging system. The Time-Over-Threshold property of the fast pre-amplification, discrimination chip NINO, can be utilized to measure the pulse-height and hence the charge content of a detector signal. The charge profile of an event can be obtained from the fired strips, which localizes the particle track. This...
The Associative Memory (AM) approach has been developed and used in the HEP experiments in terms of online track-finding based on silicon detector hits. We intend an extension of the AM approach to tracking with a drift-tube detector, taking advantage of the drift time information to define the AM pattern in the parameter space of observables. As a benchmark, our study demonstrates the...
Artificially structured composites, also known as meta-materials can emerge with unusual electromagnetic (em) properties. Owing to Transformation Optics (TO) a variety of em-devices with extraordinary pre-designed functions can be defined. As the development of meta-materials progresses, many novel em-devices designed with TO have been experimentally demonstrated and used in specific...
The design for the Level-0 endcap muon trigger of the ATLAS experiment at High-Luminosity LHC (HL-LHC) and the status of the development are presented. In the upgraded trigger system, the track reconstruction is achieved on a pattern matching algorithm using hit information on the detectors and predefined lists of the hits corresponding to tracks. Hardware implementation is planned to be done...
The Large Hadron Collider is expected to increase its center-of-mass energy to 14 TeV for Run 3 scheduled from 2021 to 2023. In order to cope with the high event rate, an upgrade of the ATLAS trigger system is required. The Level-1 Endcap Muon trigger system identifies muons with high transverse momentum by combining data from a fast muon trigger detector. In the ATLAS Phase-I upgrade, new...
T2K is a long-baseline neutrino experiment in Japan that aims to observe CP violation in neutrino oscillations. The upgrade of the T2K near detector (ND280) is ongoing now.
In the ND280 upgrade, a new detector, SuperFGD, that reconstructs the tracks of charged particles from neutrino-nuclear interactions with very fine granularity is planned to be introduced. It consists of two million...
The Large High-Altitude Air Shower Observatory (LHAASO) is being built at an elevation of 4410 meters in Haizi Mountain, Sichuan province of China. One of its main goals is to survey the northern sky for very high energy gamma ray sources via its ground-based Water Cherenkov Detector Array (WCDA). WCDA is consisted of 3120 water detector cells, divided into 3 water ponds. A hemispherical...
The CMS electromagnetic calorimeter (ECAL) is a fundamental instrument for these analyses and its energy resolution is crucial for the Higgs boson mass measurement. Recently the energy response of the calorimeter has been precisely calibrated exploiting the full Run2 data, aiming at a legacy reprocessing of the data. A dedicated calibration of each detector channel has been performed with...
As a precursor to setting up a Dark Matter (DM) direct search experiment involving scintillators at low temperatures, we have investigated the change in characteristic properties of the photon readout channel. Silicon Photomultiplier (SiPM), known for its high gain, miniature size, and low mass was studied. Leakage current of SiPM was found to have sensitive dependence on the temperature and...
GEM has become a widely used technology for high-rate particle physics experiments. Radiation hardness, ageing resistance and discharge stability are the main criteria for long-term operation of such detectors. In particular, discharge is a serious issue as it may cause irreversible damages to the detector and readout electronics. The charge density inside the amplification region is the...
Monolithic particle detector is expected to be used in ATLAS upgrade project and CEPC. Results of monolithic chip with pixel size 250μm×50μm designed by CPPM using LFoundry 150nm technology show that the depleted HVCMOS sensor has good performance on particle detecting. To improve the spatial resolution, the research work of sensors with small pixel size of 50μm×50μm was performed, and its...
The High Luminosity upgrade of Large Hadron Collider (HL-LHC) will increase LHC Luminosity by an order of magnitude increasing the density of particles on the detector by an order of magnitude. For protecting the inner detectors of experiments and for monitoring the delivered luminosity, a radiation hard beam monitor is being developed. We are developing a set of detectors based on...
In order to improve the jet energy resolution and particle identification of future high-energy physics experiments, the calorimeters of the detector systems need a fine 3-D segmentation. Depending on the size and technology, millions of individual channels consisting of a photosensor coupled to a scintillator tile have to be assembled. The usage of structured plastic scintillators with...
We investigated a fast time -resolved SiPM driver board that could be used in the CEPC-TOF and other large experimental facilities with high time resolution. General the commercial SiPM driver boards are only available for certain models of SiPM. And this kind of driver board is unique for single-channel testing in the laboratory. This obviously does not apply to batch testing in large...
The current-voltage (I-V) measurements were carried out on un-implanted and Iron (Fe) implanted n-type Silicon to establish and study a change in electrical properties of the diode with Fe doping concentration. The n-type silicon (n-Si) material was doped with Fe at fluences of 10^15,10^16 and 10^17 ion/cm^2 and schottky diodes were fabricated. The (I-V) data were used to determine the effect...
We present a free and open source firmware designed to operate as an Intelligent Platform Management Controller (IPMC). An IPMC is a fundamental component for electronic boards conformant to the Advanced Telecommunications Computing Architecture (ATCA) standard, being adopted by a number of high energy physics experiments, and is responsible for monitoring the health parameters of the board,...
Direct digitization of signals at low-bit resolution can be realized directly using FPGAs, allowing for systems that have very high channel density, and more information bandwidth than simple discriminator-based designs. Such systems may be a good candidate for high channel density, low power, integrated readouts for future high energy physics applications. We have studied such systems at 3-...
KamLAND-Zen experiment is a low background liquid scintillator (LS) detector and searches for neutrino-less double-beta decay (0$\nu\beta\beta$) of $^{136}$Xe. In order to suppress backgrounds proportional to volume (cosmo-genic muon spallation products, solar $^{8}$B $\nu$, etc.), $^{136}$Xe loaded LS is stored in the inner balloon (IB) made of nylon. The IB was made as clean as possible,...
The dark current characteristic of an RPC is often simplistically represented by the current flown in an electrical circuit of diode and resistance. It follows mainly from the variation of electrical conductivity of the gas medium with the applied voltage. We have developed a detailed model to simulate the dark current from the first principle considering the electrical properties of all the...
This work presents a design and implementation of an I/O circuit block capable of simultaneous bidirectional-transmission in CMOS integrated circuits. In High Energy Experiments at high luminosity, reducing material of silicon trackers in the inner vertex layers is of major importance to suppress multiple-scattering and to achieve good overall detector performance. Merging data-transmitter and...
The goal of the FOOT (FragmentatiOn Of Target) experiment is to measure the fragmentation cross-section of protons into H, C, O targets at beam energies of interest for hadrontherapy (50–250 MeV for protons and 50–400 MeV/u for Carbon ions). Given the short range of the fragments, an inverse kinematic approach has been chosen, hence requiring precise tracking capabilities in a magnetic volume...
The ALICE experiment at the CERN LHC is being upgraded during the ongoing second long shutdown of the LHC (2019-21) to enhance the vertexing, tracking and readout capabilities. This would improve upon the present physics measurements, provide insights into new measurements and to fully exploit the scientific potential of the LHC with heavy ions at high luminosity. In Runs 3 and 4 from 2021,...
During Run III, the LHC is expected to operate at a higher average instantaneous luminosity of around 2x10^34cm-2s-1, and to deliver an integrated luminosity of up to 100fb-1 per year. This will result in higher average pileup values during LHC fills and larger detector ageing effects. We propose to mitigate the increase in the noise contribution to the signal due to the ECAL barrel front-end...
In order to maintain sensitivity to new physics in the coming years of LHC operations, the ATLAS experiment performing a number of trigger and detector upgrades. All new components will be read out via a newly developed system featuring an application called the Software Readout Driver (SW ROD), which will run on a commodity server receiving front-end data via the Front-End Link eXchange...
The performance of ATLAS SemiConductor Tracker (SCT) in Run-2 at Large Hadron Collider (LHC) has been reviewed during the current long shutdown. The LHC successfully completed its Run-2 operation (2015-2018) with a total integrated delivered luminosity of $156~{\rm fb^{-1}}$ at the centre-of-mass $pp$ collision energy of $13~{\rm TeV}$. The LHC high performance provide us a good opportunity...
Muography is a novel imaging technology to reveal density structure of hill-sized objects. The cosmic muons lose their energy and penetrate hundreds of meters into the ground, thus their differential local flux correlates with the density-lenght they traveled through.
Exploiting the high flux around the zenith the imaging of the internal structure of hills could be done underground. Various...
This work describes the first experimental results from the characterization of a 32 channels mixed-signal processor developed for the readout of lithium-drifted silicon, Si(Li), detectors of the General AntiParticle Spectrometer (GAPS) experiment to search for dark matter. The instrument is designed for the identification of antideuteron particles from cosmic rays during an Antarctic balloon...
The ALICE experiment at the CERN LHC will install a fast, ultralight Inner Tracking System made of monolithic active pixel sensors (ALPIDE) during the ongoing second long shutdown of the LHC (2019-21) to improve upon the present physics measurements and provide insights to new measurements. ALPIDE is based on TowerJazz 180 nm technology and is a result of an intensive R&D programme over the...
The HADES collaboration [1] at GSI Darmstadt, Germany, is developing a new T0 and beam tracking system based on the Low Gain Avalanche Diodes (LGAD) [3,4], aka Ultra Fast Silicon Detectors (UFSD).
The group has prepared a demonstration system realized as a beam telescope consisting of two UFSD strip sensors with size of about 5mm x 5mm and the strip structure with a 140 µm pitch. They are...
Low Gain Avalanche Detectors (LGADs) are thin silicon detectors (20 to 50 $\mu m$ in thickness) with moderate gain (up to ~50). LGADs have good time resolution (~17 ps), fast rise time (~500ps), and short full charge collection time (~1ns), which are suitable for numerous future applications.
The first implementation of LGADs will be with the ATLAS and CMS detectors in preparation for the...
The nEXO experiment is a TPC planned to search for neutrinoless double beta decay (0𝝂𝛽𝛽) in Xe136 enriched liquid xenon, with a projected sensitivity sufficient to probe the neutrino mass inverted hierarchy. The isotope Xe136 is the 2𝝂𝛽𝛽 source while the remaining xenon acts as the detection medium, using silicon photomultipliers (SiPMs) to detect scintillation light. The largest contribution...
Precision polarimetry for high energy electron beams is a crucial aspect of the precision physics experiments that are either under construction or planned at facilities such as Jefferson Lab, the EIC (electron-ion collider), or the proposed upgrade for SuperKEKB polarized beam. Compton polarimetry can be implemented as a non-invasive continuous measurement. The technique is well known and has...
A promising approach to increase the radiation hardness of existing detector designs are defect engineering and the dedicated and controlled enrichment of the silicon bulk with foreign atoms. NitroStrip is a RD50 project with the goal of understanding the effect of nitrogen enrichment on the radiation hardness of high resistivity float zone silicon.
Previous works suggest an increased...
The Vacuum Silicon PhotoMultiplier Tube (VSiPMT) idea was born in Naples with the intent of substituting PMTs dynode chain, which bring many problems due to the gain concept adopted. Looking at the history of photodetectors, one can notice that there are different attempts to overcome the ”dynode problem”. Over the years, SiPMs and HPDs went closer to the solution of the problem. Neverthless,...
We present the latest results on NanoUV, a novel UV light detector concept based on aligned carbon nanotubes. The efficiency of today’s UV light detectors is limited by the quantum efficiency of photocathodes, which for photons in the UV range rarely exceeds 20-30% in commercial models. This is because photoelectrons produced by UV photons have low energy, and are therefore easily re-absorbed...
The Phase-2 Upgrade of the CMS experiment is designed to prepare its detectors for operation at the High Luminosity Large Hadron Collider (HL-LHC). The upgraded collider will begin operation in 2026, featuring new challenging conditions in terms of data throughput, pile-up and radiation, reasons for which the tracker detector will be entirely replaced by a new design. We present the current...
ATLAS is preparing for the HL-LHC upgrade, where integrated and instantaneous luminosity will reach unprecedented values. For this, an all-silicon Inner Tracker (ITk) is under development with a pixel detector surrounded by a strip detector. The strip system consists of 4 barrel layers and 6 EC disks. After completion of FDRs in key areas, such as Sensors, Modules, Front-End electronics and...
The LAPPD is a 400 cm2 microchannel plate photomultiplier (MCP-PMT) with a timing resolution better than 60 pS. The large area and high speed makes the LAPPD suitable for viewing large area scintillators or large experimental volumes, and for applications such as neutron detectors or Cerenkov light detectors. It has sensitivity to single photoelectrons with a gain of ~7E6 or higher. It...
The construction of a RICH detector for high momenta hadron identification at the future Electron Ion Collider is challenging: the compact detector setup imposes a short radiator, limiting the number of photons. A windowless RICH operating in the far UV region is a possible choice. CsI is a widely used photo-cathode (PC) for far UV photons, but it is hygroscopic, delicate to handle and its...
Neutrinoless double beta decay (0$\nu\beta\beta$) search is an only-one realistic experiment for the Majorana neutrino test (neutrino = anti-neutrino). Some experiments have already set the lower limit on the half-life of 0$\nu\beta\beta$ as 10$^{\rm 25 - 26}$ years, however, the future high sensitivity search experiment need scalability and background rejection methods.
We propose a xenon...
The High Luminosity phase of the LHC (HL-LHC) will result in an increase of beam
energy, a higher collision rate, and a harsher radiation environment. A challenge for CMS is to maintain an efficient and reliable trigger for muons with eta > 1.6. Gas Electron Multiplier (GEM) technology can operate well at high particle fluxes and will be employed in the upgrade of the endcap muon system. The...
The DUNE experiment requires a highly capable near detector system to achieve its ambitious physics goals. One of the subsystems of the near detector is the Multi-Purpose Detector (MPD), which will consist of a high pressure gaseous Argon TPC surrounded by an electromagnetic calorimeter, embedded in a magnetic field. The calorimeter complements the tracking capabilities of the TPC with photon...
The inner 2 layers of the Belle II VXD are based on DEPFETs (PXD). This technology allows the construction of the currently most light-weight pixel detector in operation (0.2% X$_0$ in the acceptance area). It is the first time that this technology is deployed at a HEP experiment. PXD is in operation in Belle II since 03/2019 and is taking data with very good performance. The S/N is close to...
We present an integrated analog Front-End (FE) designed in a 65 nm CMOS process optimized for the readout of 6 cm2 Silicon Photomultiplier (SiPM) tiles. It implements a super-common gate preamplifier followed by a newly introduced 4th order fully-differential complex conjugate pole shaper. The circuit can be programmed for various series-parallel SiPM arrangements and peaking times. It...
The Analogue Hadron Calorimeter (AHCAL) of the CALICE collaboration is a technological prototype for future linear collider detectors, addressing scalability, integration and engineering challenges imposed by the experimental environment. It is based on the SiPM-on-tile technology, where the active layers of the calorimeter are formed by 3x3 cm2 plastic scintillator tiles placed on top of...
The LoLX project aims to study the properties of light emission in LXe. Investigating timing characteristics of both the scintillation and Cherenkov light, LoLX will explore the abilities of single-phase LXe detectors for particle physics and medical imaging. The first phase of the LoLX detector consists of 24 Hamamatsu VUV4 Silicon photomultipliers (SiPMs), giving a total of 96 channels...
The "Ice Ray Sampler X" (IRSX) is a low-power 8-channel waveform sampling frontend ASIC designed for HEP applications, fabricated by TSMC in a 250nm CMOS process. Each input channel samples into a switched capacitor array (SCA) of 32,768 samples depth at an adjustable rate of 2-4GSa/s, for an effective sample buffer depth of 8-16$\mu s$. Stored samples can be digitised with 12bit resolution...
A report will be presented on the performance of Time Projection Chamber gas amplification elements that have been utilized and gases proposed for next generation central tracking detectors, including an option with continuous readout at high luminosity. The presentation will focus on issues critical for high rate detector operation, such as the positive ion backflow (IBF) and energy...
A novel bunch-by-bunch vertical beam size monitor was developed for the SuperKEKB storage rings (e+ and e-) at KEK in Tsukuba, Japan. Each monitor is capable of resolving the pattern of synchrotron radiation from each passing bunch of charge. The nanobeams, which are new for SuperKEKB, produce a 5-15 keV spectrum of X-Rays with a small opening angle. The Si sensor is 75 um thick with 128...
The Super Charm-Tau Factory is an electron-positron collider experiment in the center of mass energy range from 2 to 6 GeV with peak luminosity 10$^{35}\text{cm}^{-1}\text{s}^{-1}$. The luminosity in 100 times higher than at BES-III experiment will be provide due to implementation of Crab-Waist scheme of collision and submillimeter vertical beta-function. Also the high level of longitudinal...
Time projection chambers read by gaseous detectors are widely used but the gaseous amplification has several drawbacks: constraints on the gas mixture, energy resolution degradation, ion backflow in the drift volume. The present project proposes to detect directly the primary ionization electrons, with several applications: hydrogen TPC as proton active target, search for neutrinoless...
The GERDA experiment reached the most stringent limit for the neutrinoless double-beta decay in $^{76}$Ge. A median sensitivity of $1.1\cdot10^{26}$ years and a lower half-life limit of $0.9\cdot10^{26}$ years (90% C.L.) were achieved with a background index of $5.6^{+3.4}_{-2.4}\cdot10^{-4}$ cts/(keV kg yr). This low background rate was obtained by a combination of pulse shape discrimination...
In the framework of the HL-LHC project, the upgrade of the CMS Muon System foresees the installation of three new muon stations based on the GEM technology, named as GE1/1, GE2/1 and ME0 detectors. The CMS GEM Group has developed a novel construction design of GE1/1 triple-GEM detectors; in particular, a new self-stretching technique has been introduced to mechanically stretch the GEM foils...
The Time of Propagation (TOP) detector is a novel particle identification system developed for the barrel region of the Belle II detector at the SuperKEKB collider at KEK in Tsukuba, Japan. The detector is based on reconstructing the emission angle of Cherenkov photons generated in its quartz radiator bars by measuring the propagation time of individual photons to the Micro-Channel Plate PMT...
Charging-up is a common phenomenon observed while working with gaseous ionization detector having dielectric material. It is mainly comprised of two processes namely, the polarization of dielectric due to exposure of high electric field and collection of charges on the dielectric surface. Both of these charging-up processes affect the gain of the detector as they change the local field...
The TORCH time-of-flight detector is designed to provide a 15 ps timing resolution for charged particles, resulting in pi/K particle identification up to 10 GeV/c momentum over a 10 m flight path. Cherenkov photons, produced in a quartz plate of 10 mm thickness, are focused onto an array of micro-channel plate photomultipliers (MCP-PMTs) which measure the photon arrival times and spatial...
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double-beta decay (0νββ) that has been able to reach the one-ton scale. The detector, located at the Laboratori Nazionali del Gran Sasso in Italy, consists of an array of 988 TeO$_2$ crystals operated as cryogenic bolometers at 10 mK. The construction of the experiment...
Gas amplification of the electrons created by X-rays or charged particles plays an essential role in their detection with gaseous detectors. However, its gain fluctuates because of avalanche statistics, thereby degrading the energy resolution for monochromatic X-rays or the spatial resolution at long drift distances for large Time Projection Chambers (TPCs). We have developed a novel technique...
The Compressed Baryonic Matter experiment (CBM) at FAIR is designed to measure at unprecedented interaction rates up to 10MHz to study extremely rare probes in nucleus-nucleus collisions with high precision. Hence, CBM will be equipped with fast and radiation hard detector systems, readout by a free-streaming data acquisition system, transporting data with up to 1TB/s to a large scale computer...
Motivate vertex detector at collider. Describe technologies.
Motivate fast timing. Present new technologies (LGADs,...)
We propose a novel detector for quality assurance in hadron therapy, for which an accurate dose calculation and verification with high spatial accuracy are required. For this purpose, a promising tool is the GEMPix detector, which combines a triple GEM (Gas Electron Multiplier) and a quad Timepix ASIC used as highly pixelated readout. The GEMPix (active area 28x28 mm$^2$) is capable of...
The ATLAS level-1 calorimeter trigger hardware will be upgraded between the end of Run 2 and the start of Run 3. An overview of the hardware upgrades will be presented. Details of the algorithm design will be presented, along with the projected performance for electrons, jets and missing transverse momentum triggers.
In the scope of the search for axions and axion like particles (Alps) with helioscopes, like the International Axion Obeservatory (IAXO) and its precurser BabyIAXO, detectors capable of measuring low energy X-rays down to the 200 eV range are necessary. For this purpose the GridPix detector is an appropriate solution, which has already been used successfully at CAST.
The GridPix is a...
A compact scintillation detector system based on SiPM and GAGG:Ce crystals has been developed to provide a small $\gamma$-spectroscopy system for the deployment in pipe-work with suspected nuclear contamination. The sensor also shows very good performance in the detection of $\beta$-particles.
An energy resolution of 7% for $E_\gamma=662 keV$ has been achieved with a peak-to-total ratio of...
The primary goal of the AEgIS experiment is to measure the gravitational acceleration on antimatter by means of deflectometry/interferometry. This requires the simultaneous detection of the impact position and time of arrival of the atoms at a detector with high resolution. The detection of a low-velocity positronium (Ps) beam with (88 ± 5) µm spatial resolution was demonstrated [1]. Based on...
The ATLAS experiment will undergo a series of upgrades during the 2019-2021 LHC shutdown to maintain physics performance in the increasingly harsh collision environment. The Front-End Link eXchange (FELIX) will be introduced into the readout system as part of this upgrade. FELIX will be the interface between the data acquisition; detector control and TTC (Timing, Trigger and Control) systems;...
This presentation will summarize the ECAL trigger performance achieved during LHC Run 2 (2015-2018). It will describe the methods that are used to provide frequent calibrations of the ECAL trigger primitives during LHC operation. These are needed to account for radiation-induced changes in crystal and photodetector response and to maintain stable trigger rates and efficiencies up to |eta|=3.0....
Advanced imaging and treatment techniques in proton therapy allow conformal high dose irradiation of the target volume with high precision using pencil beam scanning or beam shaping apertures. These irradiation methods increasingly include small radiation fields with large dose gradients at the edges, which require the development of new micro dosimetry systems with precise spatial resolution...
Due to the advantageous characteristics of charged particles' energy deposition
in matter, proton or $^{12}$C beams are used to treat deep-seated solid tumors.
Using these beams, the maximum of the dose is released to the tumor tissues at
the end of the beam range, in the Bragg peak region. In this process
nevertheless, fragmentation of both projectile and target nuclei can occur
in the...
The identification, or “tagging” of the barium-136 daughter atom that results from double beta decay of xenon-136 provides a promising technique for elimination of all backgrounds except 2-neutrino double beta decay in future generations of 136Xe neutrinoless double beta decay experiments. We have demonstrated that individual Barium atoms can be imaged and counted in two of four matrix sites...
In our group there are several gaseous detectors in development based on a highly granular pixel ASIC (Timepix/Timepix3) and a MicroMegas gas amplification stage (InGrid). The MicroMegas is aligned with the pixel structure so that one grid hole is directly above one pixel. The combination of the Timepix and the InGrid is called GridPix. Its advantage is its high granularity combined with low...
We present new light yield and uniformity measurements of hexagonal scintillator tiles since they provide a better match to the cells of the SiD electromagnetic calorimeter. They also yield a better signal-to-noise ratio than square tiles. We use three different readout schemes: via a Y11 fiber, a directly coupled SiPM at the center of the tile in a dimple and a SIPM attached to the side of...
The current Vertex Locator (VELO) detector will be replaced from strips to pixels in the LHCb upgrade in 2020. This work focuses on the architecture of the readout chain and the challenges of the high speed data transmission and processing. The readout is divided in 3 parts: frontend VeloPix ASIC, the control and timing interface ASIC (GBTx), and the the FPGA backend board. The VeloPix is a...
The sPHENIX detector at RHIC is being designed to precisely measure jets, jet correlations, and dilepton pairs with the goal of learning about the energy-dense quark-gluon plasma. With these measurements in mind, sPHENIX will employ a compact TPC covering 20cm < r < 78 cm and |𝜂| < 1.1 as the central tracker.
Utilizing an optimized Ne-CF4 gas mixture, zigzag readout pads, a 1.4T solenoid,...
Thermal neutrons are used in different fields as archaeology, cancer therapy, material science or fundamental particle physics. To enhance capabilities of neutron facilities, the development of high precision thermal neutron detectors and their readout electronics is indispensable. Due to Helium-3 shortage, new detector concepts are sought.
The Bonn group transfers well-understood...
Serenity is a data-processing platform designed for use in the HL-LHC upgrades of the CMS tracker, endcap calorimeter and level-1 trigger, whose electronics systems will consist of several hundred cutting-edge boards connected by tens of thousands of high-speed optical links. The Serenity ATCA blade provides common services, including up to 11.6Tb/s of optical I/O and an on-board CPU. The...
Particle identification(PID) is crucial to particle physics experiments. The Ring Imaging Cherenkov(RICH) detector has been widely used for PID in a large momentum range, and long gaseous radiators are required to identify high-momentum particles. As to reduce the radiator length, a concept of windowless RICH was recently proposed and investigated.
In this work, a windowless RICH detector...
The CUORE experiment operates 742 kg of TeO$_2$ crystals as cryogenic bolometers at ~10 mK. The CUORE cryostat – the today’s largest mK infrastructure in the world – provides the cooling power at 4 K by mean of five Pulse Tube (PT) cryocoolers. The success of the experiment stands on the capability to mitigate the mechanical vibrations, which can significantly spoil the detector energy...
T2K is a long-baseline neutrino experiment based in Japan that aims to observe for the first time the violation of the CP symmetry in the neutrino sector. The upgrade of the magnetized near detector (ND280) is under development. The neutrino active target is a 3D highly segmented plastic scintillator detector (SuperFGD) made of about two million cubes. The light readout is based on sixty...
With the observation of the gravitational wave event of August 17th 2017 the multi-messanger astronomy era has definitely begun. With the opening of this new panorama, it is necessary to have new instruments and a perfect coordination of the existing observatories.
Crystal Eye is a detector aimed at the exploration of the electromagnetic counterpart of the gravitational waves. Such events...
As nuclear and particle physics facilities move to higher intensities, the detectors used there must be more radiation tolerant. Diamond is in use at many facilities due to its inherent radiation tolerance and ease of use. We will present radiation tolerance measurements of the highest quality poly-crystalline Chemical Vapor Deposition (pCVD) diamond material for irradiations from a range of...
The Gravitational wave high-energy Electromagnetic Counterparts All-sky Monitor (GECAM) project is the planned China’s space telescopes launched in 2020 for searching gamma-rays from gravitational wave events such as double neutron stars merging. GECAM features instantaneous full-sky monitor with two micro-satellites, which can be achieved with relatively short time and small cost based on...
The Cherenkov Telescope Array (CTA) will use three telescope sizes to effectively detect cosmic gamma rays in the energy range from several tens of GeV to hundreds of TeV. The Small Sized Telescopes (SSTs) will form the largest section of the array, with up to 70 telescopes covering an area of many square kilometres on the CTA southern site in Paranal, Chile. The SSTs will provide...
Commissioning of readout electronics for the Belle II K-Long and Muon (KLM) detector is discussed. Belle II is located at the interaction point of the SuperKEKB particle collider in Tsukuba, Japan. The KLM subdetector, formerly made solely from resistive-plate counters, has been partially upgraded with polyvinyltoluene scintillating bars, each covered in a TiO$_2$ reflective coating, embedded...
Future experiments in particle physics foresee few-micrometer single-point position resolution in their silicon vertex detectors, motivated by e.g. b- and light-quark-tagging capabilities. Instead of scaling down pitch sizes, our sensor concept seeks to improve the position resolution by using a dedicated charge sharing mechanism. In enhanced lateral drift (ELAD) sensors, this mechanism...
The CMS muon endcap trigger is being upgraded to prepare for data taking at the high-luminosity Large Hadron Collider. The upgrades are needed to cope with the increasing data rate in a challenging environment and to improve the sensitivity of the detector to physics beyond the standard model with displaced muons. Through the mid 2020s, the muon endcap system will be instrumented with new Gas...
The DePFET is an active pixel sensor first introduced in 1987 (Kemmer&Lutz NIMA 1987) and is utilized in and suggested for experiments in astrophysics, planetary exploration as well as particle physics. The DePFET is essentially a pMOSFET built on a high resistive, fully depleted bulk. A deep-n implant beneath the MOS-gate forms a positive potential. Electrons are collected in this “internal...
The Radio Neutrino Observatory in Greenland (RNO-G) is designed to make the first observations of ultra-high energy neutrinos at energies above 100 PeV via the detection of Askaryan radiation, and serve as a technology pathfinder for IceCube-Gen2. The experiment will comprise 35 autonomous stations deployed over a 5 x 6 km grid near to NSF's Summit Station in Greenland, making it the largest...
The Pacific Ocean Neutrino Experiment (P-ONE) is a new initiative between Canadian and German groups that aims to construct a large volume neutrino telescope in the Northeast Pacific Ocean and, in this way, complement the sky coverage of the existing or under construction neutrino telescopes. As part of the NEPTUNE observatory, established by ONC, two pathfinders were initiated and connected...
In light of the upgrade program of the ALICE detector a forward calorimeter (FoCal) is being considered that must be able to discriminate decay photons from direct photons at high energy, requiring extremely high granularity. We are constructing a unique prototype of a digital e.m. calorimeter based on CMOS monolithic active pixel sensors (MAPS) that should fulfil this requirement.
The...
The large scaler neutrino detectors (JUNO, HyperK), need the large area PMTs for the large photocathode coverage and less electronic channels. Researchers at IHEP have conceived a new concept of large area PMTs, of which the small MCP units replace the bulky Dynode chain. After several years R&D, the 20 inch MCP-PMT was successfully produced. This type of PMT has large sensitive area, high QE,...
The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment. The main physics goal of JUNO is determination of neutrino mass hierarchy by utilizing reactor neutrinos. There will be appropriate 20000 20” PMTs equipped for JUNO, including 15000 MCP-PMT from NNVT and 5000 dynode-PMT from Hamamatsu. To achieve the designed 3%@1MeV energy resolution, the PMTs need to...
New developments have allowed, for the first time, use of $6\,\mathrm{\mu m}$ pore MCPs in $53\times 53\,\mathrm{mm^2}$ active area MCP-PMTs, enabling improved magnetic field immunity and timing performance for single photon detection applications. The performance of Photek MAPMT253 MA-MCP-PMTs using ALD coated versions of these new MCPs will be assessed and compared with the standard...
Muon tomography consists in using cosmic muons to probe structures in a neither invasive nor destructive way. Following the first muography of a water tower using a muon telescope based on Micro-Pattern Gaseous Detectors and developed at CEA Saclay in 2015, the gaseous detectors and electronics have been developed to be more robust to high variations of temperature, allowing to operate in...
This study aimed to evaluate the effect of radiation damage on a VUV-MPPC caused by VUV light.
We observed PDE degradation of VUV-MPPCs installed in liquid xenon γ detector for the MEG experiment under μ beam. One possible cause can be a surface damage at Si-SiO2 interface. The electric field near the interface can be reduced by accumulated holes from the ionization of incident particles....
Muography is a novel imaging technology to reveal density structure of hill-sized objects. The cosmic muons predictably lose their energy and penetrate hundreds of meters into the ground, thus their differential local flux
correlates with the crossed density-length.
The Sakurajima Muography Observatory in Kagoshima, Japan, is the largest muography experiment targeting an active volcano....
The Curious Cryogenic Fish (CCF) is a robotic device that may in future operate in large cryostats used for particle physics experiments, such as DUNE. The goal is to perform visual inspections, diagnostic measurements and simple manipulative tasks, integrating the functionalities of a diagnostic station with the flexibility of an unmanned vehicle-manipulator.
Such a device would allow to...