The ARCADIA collaboration is developing Fully-Depleted Monolithic Active Pixel Sensors (FD-MAPS) with an innovative sensor design, providing efficient charge collection and fast timing over a wide range of operational and environmental conditions. The design targets very low power consumption, of the order of 20 mW cm$^{-2}$ at 100 MHz cm$^{-2}$ hit flux, to enable air-cooled operation. In...
Both the current upgrades to accelerator-based HEP detectors (e.g. ATLAS, CMS) and also future projects (e.g. CEPC, FCC) feature large-area silicon-based tracking detectors. We are investigating the feasibility of using CMOS foundries to fabricate silicon radiation detectors, both for pixels and for large-area strip sensors. The availability of multi-layer routing will provide the freedom to...
We present measurements on AC-LGADs (aka Resistive Silicon Detectors RSD), a version of LGAD which has shown to provide spatial resolution on the few 10‘s of micrometer scale. This is achieved by un-segmented (p-type) gain layer and (n-type) N-layer, and a di-electric layer separating the metal readout pads. The high spatial precision is achieved by using the information from multiple pads,...
The last couple of years have seen the development of Depleted Monolithic Active Pixel Sensors (DMAPS) fabricated in TowerJazz 180nm with a process modification to increase the radiation tolerance. While many of MAPS developments focus on low radiation environment, we have taken the development to high radiation environment like pp-experiments at High Luminosity LHC. DMAPS are a cost effective...
Low- Gain Avalanche Detector (LGAD) with time resolution better than 50ps has been choose as the sensors for HGTD project and have so far been developed by several institutes. This talk will show the measurement results about 50um thick IHEP-IMEv1 LGAD sensors designed by the Institute of High Energy Physics (IHEP) and fabricated by Institute of Micro Electronics (IME). Beta source measurement...
Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence of 1-5 1015 1 MeV...
A collaboration involving a US National Laboratory (Brookhaven National Laboratory), a private-sector technology company (Cactus Materials, Inc.) and a University institute (the Santa Cruz Institute for Particle Physics at the University of California, Santa Cruz) has been working on new approaches to the development of highly-granular timing layers for minimum-ionizing particle and X-Ray...
Detectors based on Chemical Vapor Deposition (CVD) diamond have been used successfully in beam conditions monitors in the highest radiation areas of the LHC. Future experiments at CERN will to accumulate an order of magnitude larger fluence. As a result, an enormous effort is underway to identify detector materials that will operate after fluences of >10^{16}/cm^2.
Diamond is one candidate...
We propose a photon trap designed for improved photon detection efficiency in a cost-efficient way. A Wavelength Shifting plastic sheets (WLS) are deployed at the bottom of a PMT, surrounded by dichroic film by which photons are efficiently trapped and guided to the PMT. We measured wave-length dependent transmittance of a commercially available dichroic film in water, a key variable...
Two current issues with Silicon particle sensors are the high cost, making them a cost driver, and the limited availability from only a few manufacturers. Most CMOS foundries are equipped for producing small chips only. To obtain larger sensors as required in strip trackers, reticles have to be connected by stitching. In our study, passive strip sensors were developed in p-CMOS 150 nm...
The ATLASpix_Simple is a high-voltage monolithic active pixel sensor (HV-MAPS), which was initially designed as a candidate for the ATLAS ITk Upgrade and the CLIC tracking detector. In this contribution new results from test-beam campaigns with inclined tracks are presented, in which the performance is compared for different substrate resistivities and the active charge collection depth is...
Ultra-Fast Silicon Detectors (UFSD) are sensors based on the LGAD technology and designed to achieve concurrent precise timing and position measurements.
In the past 5 years, an intense R&D program has been carried out at FBK-Trento to optimize the design of UFSD, exploring specific features such as the gain layer design, radiation hardness, time resolution, production uniformity, and...
Development of semiconductor technology has enabled engineering of ultrafast, high-yield, and radiation-tolerant quantum dot (QD) based scintillation materials with sub-nanosecond emission time and light yield > 2x10^5 photons/MeV. Such materials could be very attractive for various HEP applications, particularly for fast timing and low-mass tracking detectors. We present results on a...
RD53 is the research and development group at CERN, responsible for developing and producing the next generation of readout chips for the ATLAS and CMS pixel detector upgrades at the HL-LHC. Its most recent development, ITkPix is the first full-scale 65 nm hybrid pixel-detector.
ITkPix consists of more than one billion transistors with a high triplication ratio in...
Tracking at future hadron colliders will require sensors that achieve precise spatial and temporal resolution simultaneously. AC-coupled Low Gain Avalanche Detectors (AC-LGADS) are a promising candidate technology, combining the precision timing achieved in LGADs with highly granular readout. We present results from a 2021 test beam campaign to characterize AC-LGAD prototypes produced by...
The FOOT (FragmentatiOn Of Target) experiment aims to measure the fragmentation cross-section of protons into H, C, O targets at beam energies of interest for hadrontherapy (50–250 MeV for H and 50–400 MeV/u for C ions).
Given the short range of the fragments, an inverse kinematic approach requiring precise tracking capabilities in a magnetic volume has been chosen.
A key subsystem of...