Speaker
Description
Scintillation materials can convert high-energy rays into visible light. Compared with crystal scintillator, the glass scintillator has many advantages, such as a simple preparation process, low cost and continuously adjustable components. Therefore, glass scintillator has long been conceived for application in the nuclear detection such as hadronic calorimeter. Given the deficiency of the crystal and the plastic scintillator, a new concept, Glass Scintillator Hadronic Calorimeter was proposed. In 2021, the researchers in the Institute of High Energy Physics (IHEP) have set up the Large Area Glass Scintillator Collaboration (GS group) to study the new glass scintillator with high density and high light yield. Currently, a series of high density and high light yield scintillation glasses have been successfully developed. The density of Ce3+ doped borosilicate and silicate glasses exceed 6 g/cm3 with a light yield of 1000 ph/MeV.
Alternate track | 17. Technology Applications and Industrial Opportunities |
---|---|
I read the instructions above | Yes |