Speaker
Description
Flavour-tagging is a critical component of the ATLAS experiment physics programme. Existing flavour tagging algorithms rely on several low-level taggers, which are a combination of physically informed algorithms and machine learning models. A novel approach presented here instead uses a single machine learning model based on reconstructed tracks, avoiding the need for low-level taggers based on secondary vertexing algorithms. This new approach reduces complexity and improves tagging performance. This model employs a transformer architecture to process information from a variable number of tracks and other objects in the jet in order to simultaneously predict the jets flavour, the partitioning of tracks into vertices, and the physical origin of each track. The new approach significantly improves jet flavour identification performance compared to existing methods in both Monte-Carlo simulation and collision data.
I read the instructions above | Yes |
---|