Island Hopping 2020: from Wormholes to Averages

Europe/Zurich
Virtual conference only (CERN)

Virtual conference only

CERN

Description

Welcome to Island Hopping 2020, a workshop that will be held entirely virtually!

 

The focus will be on recent developments around the information paradox, quantum extremal surfaces and islands, generalized entropies, the Euclidean path integral in quantum gravity and the importance of spacetime wormholes, as well as the role of ensemble averages in holography. It will be held from November 16-20 2020.

Confirmed Speakers:

Ahmed Almheiri - Raphael Bousso - Alejandra Castro - Jan de Boer - Steve Giddings - Daniel Harlow - Tom Hartman - Daniel Jafferis - Kristan Jensen - Clifford Johnson - Hong Liu - Alex Maloney - Juan Maldacena - Henry Maxfield - Geoff Penington - Andrea Puhm - Suvrat Raju - Phil Saad - Edgar Shaghoulian - Julian Sonner - Douglas Stanford - James Sully - Mark Van Raamsdonk - Herman Verlinde - Ying Zhao

Recordings and Slides:

The slides of the presentations can be found in the contributions list, by clicking on a particular talk. Video recordings will be made available as the conference goes on, please see the appropriate tab.

 

Pre-conference tutorials

Coorganized with Jonathan Oppenheim, pre-conference tutorials were held on Friday Nov. 13 for younger students or participants who are less familiar with the topics of the conference. The lecturers are Raghu Mahajan and Dominik Neuenfeld. Please find additional information in the relevant tab, including a link to the recordings.

Schedule

Talks and panel discussions will be held in two sessions each day:

Central European: 16:00 - 18:00 and 20:00 - 22:00

Eastern:                 10:00 - 12:00 and 14:00 - 16:00

Pacific Coast:         07:00 - 09:00 and 11:00 - 13:00

The detailed schedule can be found in the programme tab on the right.

There will be opportunities for informal discussions and social interactions in between these 2 sessions, which will happen on gather.town.

 

Organizers: A. Belin, N. Engelhardt, R. Myers

 

The registration deadline is Monday November 9th. Please click on the registration tab.

This workshop acknowledges funding from the "It from Qubit" Simons collaboration.

 

Participants
  • `Domenico Seminara
  • Aaron Poole
  • Aasmund Folkestad
  • Abderrazaq El Abassi
  • Abhiram Kidambi
  • Abhishek Pandey
  • Abinash Swain
  • Adam Chalabi
  • Adam Getchell
  • Adam Levine
  • Adel Rahman
  • Adolfo Holguin
  • Adrian Sanchez-Garrido
  • Adrita Chakraborty
  • Adrián Casado-Turrión
  • Agnese Bissi
  • Ahmad Ghodsi
  • Ahmed Almheiri
  • Ahmed Rizwan C.L
  • Aidan Chatwin-Davies
  • Akhil Sheoran
  • Akihiro Miyata
  • Akshat Pandey
  • Alan Garbarz
  • Alan Rios Fukelman
  • Alba Grassi
  • Alberto Rivadulla Sánchez
  • Alejandra Castro
  • Alejandro Vilar López
  • Aleksandar Bukva
  • Alessandra Gnecchi
  • Alessandro Coppo
  • Alex Buchel
  • Alex Kehagias
  • Alex May
  • Alexander Frenkel
  • Alexander Maloney
  • Alexander Zhiboedov
  • Alexandra Miller
  • Alexandre Belin
  • Alexey Milekhin
  • Alexis Tremolada
  • Alfredo Perez
  • ali naseh
  • Alice Bernamonti
  • Alicia Castro
  • Allic Sivaramakrishnan
  • Alokananda Kar
  • Amanda Van Hemert
  • Amir Raz
  • Amir Tajdini
  • AmirHossein Fallah Zarrinkar
  • Amitabh Virmani
  • Amr Ahmadain
  • Ana-Maria Raclariu
  • Anastasia Golubtsova
  • Anastasia Volovich
  • Anatoly Dymarsky
  • Anderson Misobuchi
  • Andrea Legramandi
  • Andrea Puhm
  • Andrea Rocchetto
  • Andrea Russo
  • Andreas Blommaert
  • Andreas Karch
  • Andrei Parnachev
  • Andres Goya
  • Andrew Loveridge
  • Andrew Rolph
  • Andrew Scoins
  • Andrew Svesko
  • Andrey Glubokov
  • Andrzej Rostworowski
  • Andrés Argandoña
  • Anindita Maiti
  • Anindya Banerjee
  • Anirban Dinda
  • Ankit Anand
  • Ankit Dhanuka
  • Ankur Srivastav
  • Anna Karlsson
  • Annie Wei
  • Antonia Frassino
  • Antony Speranza
  • Aranya Bhattacharya
  • Archana Maji
  • Archishna Bhattacharyya
  • Arjun Kar
  • Arnab Kundu
  • Arpit Das
  • Arpita Mitra
  • Arunabha Saha
  • Arvin Shahbazi-Moghaddam
  • Ashish Chandra
  • ASHISH KAKKAR
  • Ashish Shukla
  • Augniva Ray
  • Ayan Patra
  • Bahman Najian
  • Baishali Roy
  • Barbara Šoda
  • Bart Horn
  • Batoul Banihashemi
  • Baur Mukhametzhanov
  • Behrad Taghavi
  • Behrouz Mirza
  • Ben Withers
  • Beni Yoshida
  • Bobby Ezhuthachan
  • Boris Sokolov
  • Boyuan Shi
  • Bram Vancraeynest
  • Brandon Rayhaun
  • Brian Greene
  • Brianna Grado-White
  • Bruno Gimenez Umbert
  • Bruno Torres
  • Budhaditya Bhattacharjee
  • Calvin Chen
  • Cameron Cogburn
  • Carlos Macedonio Montañez Montenegro
  • Carlos Perez
  • Chandramouli Chowdhury
  • Chao Ju
  • Charles Marteau
  • Charles Rabideau
  • Cheng Peng
  • Cheryne Jonay
  • Chiara Toldo
  • Chih-Hung Wu
  • Chiranjeeb Singha
  • Chitraang Murdia
  • Chiung Hwang
  • Chris Akers
  • Chris Waddell
  • Christina Rugina
  • Clifford Johnson
  • Congkao Wen
  • Cristian Rivera
  • Curtis Asplund
  • Cynthia Yan
  • Cyuan-Han Chang
  • Dalimil Mazac
  • Dan Carney
  • Dan Roberts
  • Dana Maria Ioan
  • Daniel Harlow
  • Daniel Jafferis
  • Daniel Mayerson
  • Daniel McLoughlin
  • Dao-Quan Sun
  • Dao-Quan Sun
  • David Berman
  • David Blanco
  • David Grabovsky
  • David Kolchmeyer
  • David Kubiznak
  • David Licht
  • David Meltzer
  • David Rivera
  • David Simmons-Duffin
  • David Vegh
  • David Wakeham
  • Davide Billo
  • Debarshi Basu
  • Debodirna Ghosh
  • Derek Ping
  • Diandian Wang
  • Dibya Chakraborty
  • Diego Pontello
  • diksha jain
  • Dimitrios Katsinis
  • Dimitrios Patramanis
  • Dimitris Skliros
  • dimitris tsiakoulias
  • Djordje Radicevic
  • Dmitrii Galakhov
  • Dmitry Ageev
  • Dnyanesh Kulkarni
  • Dominic Williamson
  • Dominik Neuenfeld
  • Dongsheng Ge
  • Douglas Stanford
  • Dr. Bikash Chandra Paul
  • Edgar Shaghoulian
  • Eduardo Teste
  • Edward Witten
  • Eivind Joerstad
  • Elba Alonso-Monsalve
  • Elena Caceres
  • Eleni-Alexandra Kontou
  • Elizabeth Wildenhain
  • Ellie Harris
  • Elliott Gesteau
  • Emil Martinec
  • Emilio Rubín de Celis
  • Enrico Andriolo
  • Enrico Cinti
  • Eren Kabarik
  • Erfan Esmaeili
  • Eric Howard
  • Erik Tonni
  • Erik Verlinde
  • Erika Pellegrino
  • Esteban Vásquez-Giraldo
  • Eugene Lim
  • Evan Coleman
  • Fabian Ruhle
  • Fabio Mele
  • Facundo Rost
  • Federico Galli
  • Felipe Diaz
  • Felipe Rosso
  • Felix Haehl
  • Fernando Quevedo
  • Francesc Cunillera
  • Francisco Campos Oliden
  • Frederic Jia
  • Frederico Capone
  • Freek Witteveen
  • G. Bruno De Luca
  • Gabor Sarosi
  • Gabriel Arenas-Henriquez
  • Gabriel Wong
  • Gabriele Di Ubaldo
  • Gary Horowitz
  • Gary Shiu
  • Gaston Giribet
  • Gaston Maffei
  • Gemma Hood
  • Geoff Penington
  • George Hulsey
  • George Leontaris
  • Ghadir Jafari
  • Ghazal Owen
  • Gianbattista-Piero Nicosia
  • Giuseppe Nardelli
  • Gregory Loges
  • Guangjie Li
  • Guanhao Sun
  • Guido van der Velde
  • Guillem Perez-Nadal
  • Guillermo Enrique Alemán López
  • Guillermo Silva
  • Haddad Abdelhamid
  • HADDAD Abdelhamid
  • Hamza Ahmed
  • Hao Geng
  • Haoxing Du
  • Haoyu Sun
  • Hare Krishna
  • Harkirat Singh Sahota
  • Harsha Hampapura
  • Henrique Gomes
  • Henry Lin
  • Henry Maxfield
  • Herman Verlinde
  • Himanshu Parihar
  • Hong Liu
  • Howard Schnitzer
  • Hrant Gharibyan
  • Hugo Marrochio
  • Ian Nagle
  • Ibra Akal
  • Ignacio Salazar Landea
  • Ioanna Kourkoulou
  • Ioannis Lavdas
  • Ioannis Sklavounos
  • Ioannis Tsiares
  • Irina Aref'eva
  • Isaac Layton
  • Isha Kotecha
  • Jacob Abajian
  • Jacob Fry
  • Jacob Leedom
  • Jacopo Papalini
  • Jahaira Bonifacio Chávez
  • Jaime Redondo
  • Jaka Pelaič
  • Jake Hauser
  • James Sully
  • Jan Boruch
  • Jan de Boer
  • Jason Pollack
  • Javier Magan
  • Javier Martin-Garcia
  • Javier Molina-Vilaplana
  • Jaydeep Kumar Basak
  • Jeevan Chandra Namburi
  • Jeremy Van der Heijden
  • Ji Hoon Lee
  • Jiabao Yang
  • Jiasheng Lin
  • Jie Ren
  • Jie-qiang Wu
  • Jie-qiang Wu
  • Jing Ren
  • Jinzhao Wang
  • Joan La Madrid
  • Joaquin Turiaci
  • Johanna Erdmenger
  • Johar Ashfaque
  • John Gardiner
  • Jon Yard
  • Jonah Kudler-Flam
  • Jonathan Oppenheim
  • Jonathan Sorce
  • Jordan Cotler
  • Joris Raeymaekers
  • Jorrit Kruthoff
  • Jose J. Fernandez-Melgarejo
  • Jose Miguel Muñoz
  • Joseph Schmidt
  • Josh Kirklin
  • Joshua Sandor
  • Josiah Couch
  • José Eliel Camargo Molina
  • Joydeep Chakravarty
  • Joydeep Naskar
  • João Gabriel Alencar Caribé
  • Juan Calles
  • Juan Carlos Carrasco Martínez
  • Juan F. Pedraza
  • Juan Hernandez
  • Juan Maldacena
  • Juan Sebastian Valbuena Bermudez
  • Jude Pereira
  • Julian De Vuyst
  • Julian Sonner
  • Julio Oliva
  • Julio Virrueta
  • Jun-Bao Wu
  • Jung-Wook Kim
  • Junggi Yoon
  • Justin Kulp
  • Jyotirmoy Mukherjee
  • K Narayan
  • Kaio Santos
  • Kaiwen Sun
  • Kanato Goto
  • Karan Fernandes
  • Kasia Budzik
  • Kavir Asswarnicumar
  • kawabata kohki
  • Keiichiro Furuya
  • Keivan Namjou
  • Kelly Wurtz
  • Keun-Young Kim
  • Kevin Gonzalez-Quesada
  • Kevin Grosvenor
  • Kit Carlton
  • Koenraad Schalm
  • Krai Cheamsawat
  • Kris Krylova
  • Krishan Saraswat
  • Kristan Jensen
  • Kyle Ritchie
  • Lakshya Agarwal
  • Lam Hui
  • Lampros Lamprou
  • Lars Aalsma
  • Leo Schoots
  • Leon Breen
  • Leonardo Sanhueza Mardones
  • Leonel Queimada
  • Lewis Sword
  • Lin-Qing Chen
  • Linus Too
  • Lisa Randall
  • Louise Anderson
  • Luca Griguolo
  • Luca Iliesiu
  • Luciano Petruzziello
  • Luigi Cappiello
  • Luigi Tizzano
  • Luis Alberto León Andonayre
  • Luke Berben
  • Maarten Klop
  • Maite Arcos
  • Malihe Siahvoshan
  • Manus Visser
  • Marc Casals
  • Marcel Yanez Reyes
  • Marcelo Botta Cantcheff
  • Marco Finetti
  • Marco Guaraco
  • Marco Meineri
  • Marco Sanchioni
  • Marcos Crichigno
  • Marcos Riojas
  • Mariana Carrillo Gonzalez
  • Mariano Chernicoff
  • Marija Tomasevic
  • Marika Taylor
  • Marine De Clerck
  • Mark Mezei
  • Mark Van Raamsdonk
  • Martin Sasieta
  • Martin Schvellinger
  • Martín Alejandro Bravo Gutiérrez
  • Masahito Yamazaki
  • Matan Grinberg
  • Matt Hodel
  • Matteo Selle
  • Matthew Dodelson
  • Matthew Headrick
  • Matthew Roberts
  • Matthew Walters
  • Matthew Yu
  • Max Rota
  • Maximilian Schwick
  • Maximiliano Ferro
  • Meer Ashwinkumar
  • Menghang Wang
  • Mercè Guerrero Román
  • Mert Besken
  • Meseret Asrat
  • Michael Green
  • Michael Walter
  • Michael Zlotnikov
  • Michal P. Heller
  • Michele Cirafici
  • Michelle Xu
  • Miguel Alarcon
  • Mikhail Khramtsov
  • Milan Patra
  • Mile Vrbica
  • Milind Shyani
  • Minhajul Islam
  • Minkyoo Kim
  • Minshan Zheng
  • Misha Usatyuk
  • Mohab Abou Zeid
  • Mohamed Hadidi
  • mojtaba shahbazi
  • Monica Kang
  • Moritz Dorband
  • Moshe Rozali
  • Murat Kologlu
  • Nakwoo Kim
  • Natalia Pinzani Fokeeva
  • Nava Gaddam
  • Neeraj Kumar
  • Nehal Mittal
  • Nejc Ceplak
  • Nejc Ceplak
  • Nele Callebaut
  • Nelson Hernández Rodríguez
  • Netta Engelhardt
  • Nicholas Klein
  • Nick Aldana
  • Nick van der Woude
  • Nico Valdés-Meller
  • Nicola Pranzini
  • Nicolaos Toumbas
  • Nicolas Delporte
  • Nicolò Zenoni
  • Nilakash Sorokhaibam
  • Nilesh Pandey
  • Nima Lashkari
  • Nima Lashkari
  • Nirmalya Kajuri
  • Nitin Gupta
  • Nizar Ezroura
  • Noah Bittermann
  • Oleg Grachov
  • Oleg Kaikov
  • Olga Papadoulaki
  • Omar Shahpo
  • omar suarez
  • Ondřej Hulík
  • Onkar Parrikar
  • Oscar Barrón
  • Oscar Lasso Andino
  • Pablo Bueno
  • Panagiotis Betzios
  • Paolo Glorioso
  • Paolo Pani
  • Parishmita Dutta
  • Pau Figueras
  • Paul Saffin
  • Pavel Kovtun
  • Pawel Caputa
  • Pedro F. Ramirez
  • Pedro Jorge Martinez
  • Pedro Vieira
  • Percy Cáceres
  • Petar Simidzija
  • Petar Tadic
  • Peter Taylor
  • Petr Kravchuk
  • Phil Saad
  • Philip Hacker
  • Philipp Hoehn
  • Ping Gao
  • Pingal Pratyush Nath
  • Pompey Leung
  • Pranjal Nayak
  • Pratik Nandy
  • Pratik Rath
  • Pratik Roy
  • Priyadarshini Pandit
  • Pronobesh Maity
  • Puttarak Jai-akson
  • Qiaoyin Pan
  • Quim Llorens
  • Rachel Rosen
  • Raghu Mahajan
  • Rahel Baumgartner
  • Rahul Basu
  • Raimel Medina
  • raja selvarajan
  • Rajath Radhakrishnan
  • Rajeev Singh
  • Rance Solomon
  • Raphael Bousso
  • Rashmish Mishra
  • Rathindra Nath Das
  • Raul Arias
  • Reggie Caginalp
  • Rene Meyer
  • Ricardo Espindola
  • Ricardo Schiappa
  • Ricardo Stuardo
  • Ricardo Troncoso
  • Rifath Khan
  • Rifath Khan
  • Robert de Mello Koch
  • Robert Myers
  • Roberto Auzzi
  • Roberto Emparan
  • Roberto Vega Álvarez
  • Robie Hennigar
  • Robin Karlsson
  • Rodolfo Panerai
  • Rodolfo Russo
  • Rodrigo Castillo Vasquez
  • Roman Berens
  • Ron Reid-Edwards
  • Ronak Ramachandran
  • Ronak Soni
  • Roukaya Dekhil
  • Ruben Campos Delgado
  • Ryan Bilotta
  • Sabrina Maniscalco
  • Saeed Qoli Bikloo
  • Sagar Kumar Maity
  • Sahaja Kanuri
  • Sahil Pontula
  • Sahil Ugale
  • Salvatore Baldino
  • Salvatore Raucci
  • Sam Leutheusser
  • Samarth Kapoor
  • Sami Rawash
  • Samuele Marco Silveravalle
  • Sandipan Kundu
  • sandipan sengupta
  • Sanjit Shashi
  • Sanjoy Saha
  • Sarthak Duary
  • Saskia Demulder
  • Saso Grozdanov
  • Satyaki Chowdhury
  • Sayan Kumar Das
  • Sayantan Choudhury
  • Scott Collier
  • Sean Colin-Ellerin
  • Sean McBride
  • Sebastian Fischetti
  • Sergio Ernesto Aguilar Gutierrez
  • Sergio Hernandez Cuenca
  • Sergio Hortner
  • Seth Koren
  • Shabeeb Alalawi
  • Shafayat Shawqi
  • Shailesh Lal
  • shan-ming ruan
  • Shangnan Zhou
  • Shannon Wang
  • Shaokai Jian
  • Shibaji Roy
  • Shira Chapman
  • Shota Komatsu
  • Shouvik Datta
  • Shouvik Sadhukhan
  • Shovon Biswas
  • Shoy Ouseph
  • Shreya Vardhan
  • Shristi Singh
  • Shruti Paranjape
  • Shunyu Yao
  • Shuwei Liu
  • SIDAN A
  • Silvia Nagy
  • Silvia Vicentini
  • Simon Boudet
  • Simon Ross
  • Sinnappoo Arunan
  • Sobhan Kazempour Ishka
  • Soham Ray
  • Somnath Porey
  • Soumya Bhattacharya
  • Sounak pal
  • Sourabh Chutia
  • Sourav Raha
  • Souvik Banerjee
  • Sridip Pal
  • Srishti Iyer
  • Stathis Vitouladitis
  • Stefan Vandoren
  • Stefano Andriolo
  • Stefano Antonini
  • Stefano Baiguera
  • Stefano De Angelis
  • Stephane Detournay
  • Stephen Ebert
  • Stephen Shenker
  • Steve Giddings
  • Stratos Pateloudis
  • Subham Dutta chowdhury
  • Subhobrata Chatterjee
  • Suchetan Das
  • Sukruti Bansal
  • Sunit Patil
  • Surbhi Khetrapal
  • Suvrat Raju
  • T.S.Sachin Venkatesh
  • Takato Mori
  • Tales Rick Perche
  • Tanisha Joshi
  • Taniya Mandal
  • Tarek Anous
  • Tatsuyuki Sugawa
  • Temple He
  • Teofilo Vargas
  • Theodore Tomaras
  • Thomas Hertog
  • Thomas Mertens
  • Timotej Lemut
  • Tokiro Numasawa
  • Tom Hartman
  • Tomasz Andrzejewski
  • Tomonori Ugajin
  • Tomova Bilyana
  • Tony Padilla
  • Torben Skrzypek
  • Tushar Gopalka
  • Uday Sood
  • Usman Naseer
  • Vahid Taghiloo
  • Vaibhav Gautam
  • Vaios Ziogas
  • Vaishnavi Patil
  • Valentin Benedetti
  • Valerie Bettaque
  • Ven Chandrasekaran
  • Veronica Pasquarella
  • Vesselin Gueorguiev
  • Victor Godet
  • Victor Gorbenko
  • Victor Manuel Neyra Salvador
  • Victoria Martin
  • Vinay Malvimat
  • Vinayak Raj
  • Vincent Su
  • Vishnu Jejjala
  • Vladimir Ohanesjan
  • Vyshnav Mohan
  • Wan Zhen Chua
  • Watse Sybesma
  • Wayne Weng
  • Weiguang Cao
  • Wenliang Li
  • Wenni Zheng
  • William Harvey
  • Wissam Chemissany
  • Wyatt Reeves
  • Xiaoliang Qi
  • Xuyang Yu
  • Xuyao Hu
  • Yale Fan
  • Yasmine Mhirsi
  • Yasunori Nomura
  • Yevheniia Cheipesh
  • Yikun Jiang
  • Yiluo Nadie LiTenn
  • Yiming Chen
  • Ying Zhao
  • Yixu Wang
  • Yixuan LI
  • Yolbeiker Rodriguez
  • Yongchan Yoo
  • Yuhan Guo
  • Yuk Ting Albert Law
  • Yuki Suzuki
  • Yuri Lensky
  • Yuta Sekiguchi
  • Zach Elgood
  • zezhuang Hao
  • Zhenbin Yang
  • Zhencheng Wang
  • Zheng liang Lim
  • Zhou Yang
  • Zimo Sun
  • Zixia Wei
    • 16:00 17:00
      Causal symmetry breaking: the EFT description of quantum chaos 1h

      Abstract:

      Quantum chaotic systems are often defined via the assertion that their spectral statistics coincides with, or is well approximated by, random matrix theory. In this talk I will explain how the universal content of random matrix theory emerges as the consequence of a simple symmetry-breaking principle and its associated Goldstone modes. This approach gives a natural way to identify wormhole-like correlations, even for individual theories.
      I will also discuss how to extend the Goldstone effective-field-theory approach to study operator correlation functions, and present some thoughts on how to understand causal symmetry breaking in holographic bulk gravity.

      Speaker: Julian Sonner
    • 17:00 18:00
      The time to the black hole singularity from thermal one point functions 1h
      Speaker: Juan Maldacena
    • 18:00 20:00
      Informal interactions/Virtual hanging 2h
    • 20:00 21:00
      Global symmetry, Euclidean gravity, and the black hole information problem 1h
      Speaker: Daniel Harlow
    • 21:00 22:00
      Discussion Session: To average or not to average 1h
      Speakers: Douglas Stanford, Raphael Bousso, Steve Giddings
    • 16:00 17:00
      Collision in the interior of wormhole 1h

      Abstract:

      The Schwarzschild wormhole has been interpreted as an entangled state. If Alice and Bob fall into each of the black hole, they can meet in the interior. We interpret this meeting in terms of the quantum circuit that prepares the entangled state. Alice and Bob create growing perturbations in the circuit, and we argue that the overlap of these perturbations represents their meeting. We compare the gravity picture with circuit analysis, and identify the post-collision region as the region storing the gates that are not affected by any of the perturbations.

      Speaker: Ying Zhao
    • 17:00 18:00
      Islands beyond AdS 1h

      Abstract:

      I will discuss the appearance of islands and replica wormholes in flat and cosmological spacetimes. I will also discuss general consistency conditions that guide the search for such nontrivial saddles in the gravitational path integral.

      Speaker: Edgar Shaghoulian
    • 18:00 20:00
      Informal interactions/Virtual hanging 2h
    • 20:00 21:00
      Observations of Hawking radiation: the Page curve and baby universes 1h

      Abstract:

      It has long been argued that black holes can be modeled as unitary quantum systems with density of states given by the Bekenstein-Hawking formula. It now seems that this idea is realised within semiclassical gravity, without using details of the UV completion or assuming duality. I will describe this in an asymptotically flat setting using Lorentz-signature gravitational path integrals, concentrating on the predictions for observables. However, for this semiclassical picture to be coherent, we are forced to conclude that there are superselection sectors for asymptotic observers. These sectors are associated with the states of baby universes, which appear when we consider the Hilbert space interpretation of replica wormholes.

      Speaker: Henry Maxfield
    • 21:00 22:00
      Perturbative and Non-Perturbative Insights into Deformed JT Gravity using Random Matrix Ensembles. 1h
      Speaker: Clifford Johnson
    • 16:00 17:00
      A general approximation scheme for addressing the black hole information paradox 1h

      Abstract:

      We develop a general approximation scheme for calculating quantum informational properties of a pure state that has equilibrated in a non-integrable quantum many-body system. For gravity systems, such as those involving black holes, this approximation gives a prescription for calculating entanglement entropies using Euclidean path integrals which is manifestly consistent with unitarity. Applied to recent models of evaporating black holes and eternal black holes coupled to baths, it provides a derivation of replica wormholes, and elucidates their mathematical and physical origins. In particular, it shows that replica wormholes can arise in a system with a fixed Hamiltonian, without the need for ensemble averages.

      Speaker: Hong Liu
    • 17:00 18:00
      To average or not to average 1h

      Abstract:
      In this talk I will describe a possible interpretation of genus two wormholes in AdS3 in terms of a
      suitable averaging procedure in the dual field theory, and connect this to random properties of
      OPE coefficients. I will discuss possible lessons from this for the question whether or not gravity
      is intrinsically an averaged theory. Mostly based on arXiv:2006.05499 with Alex Belin.

      Speaker: Jan de Boer
    • 18:00 20:00
      Informal interactions/Virtual hanging 2h
    • 20:00 21:00
      Gravity without Ensembles 1h
      Speaker: Jamie Sully
    • 21:00 22:00
      Discussion: Firewalls 1h
      Speakers: Ahmed Almheiri, Daniel Jafferis, Herman Verlinde
    • 16:00 17:00
      Holographic duality for averaged free CFTs 1h

      Abstract:
      I will describe how the modular bootstrap leads us toward a holographic duality for 2d Narain CFTs averaged over moduli. The bulk theory is a 3d Chern-Simons-like theory of "U(1) gravity." Although this theory has no Einstein term, it has composite gravitons and other features similar to ordinary 3d gravity, so it may be a good place to test ideas about ensemble averaging in holographic duality.

      Speaker: Tom Hartman
    • 17:00 18:00
      More on Holographic duality for averaged free CFTs 1h

      Abstract:
      I will continue to explore the idea that certain theories of gravity in Anti-de Sitter space are dual to an average over an ensemble of quantum theories, rather than to a specific quantum theory. The average over Narain’s family of two-dimensional conformal field theories which describe free bosons is given by the Siegel-Weil formula, which can be computed at any genus and for disconnected boundaries. The result takes the form of a sum over geometries as one would expect in a theory of gravity. But the gravitational theory looks more like a Chern-Simons theory than like Einstein gravity, and several mysteries remain.

      Speaker: Alex Maloney
    • 18:00 20:00
      Informal interactions/Virtual hanging 2h
    • 20:00 21:00
      Some comments on wormholes and factorization 1h

      Abstract:
      Spacetime wormholes have played an important role in recent progress in black hole physics. However, in the context of AdS/CFT, these wormholes lead to a basic puzzle: the "factorization problem", introduced by Maldacena and Maoz. In this talk we will explore this issue in some simple models, including Marolf and Maxfield's topological model, JT gravity, and the SYK model. These models are described by ensemble averages of quantum systems; the factorization problem is solved by focusing on single members of the ensemble. In gravitational theories like JT gravity and the topological model, this involves introducing many additional spacetime boundaries in path integral computations. We find that there is a simple effective description common to these models, where the many additional boundaries are replaced by a single "dynamical" boundary. A variant of this effective description also applies to the SYK model. This effective description involves a peculiar modification to the sum over geometries; it requires us to identify a ``diagonal'' subset of the contributions of the dynamical boundaries with the wormhole. This rule has somewhat different origins in the full description of the gravitational theories and the SYK model. We briefly comment on how this might be relevant to conventional, non-averaged AdS/CFT.

      Speaker: Phil Saad
    • 21:00 22:00
      Wormholes, random matrices, and (non-)factorization in d>2 1h

      Abstract:

      In the first half of this talk, I will discuss wormholes in pure 3d Euclidean gravity with negative cosmological constant. We compute a wormhole amplitude, the path integral over Euclidean spaces which smoothly connect two hyperbolic regions with torus boundary and topology torus times line. This is a 3d version of the “double trumpet” of JT gravity. From this amplitude we extract the leading two-point fluctuation statistics of highly spinning BTZ microstates near threshold. These statistics precisely match a random matrix ansatz. This is evidence that, if 3d gravity is a consistent theory of gravity, then it is dual to an ensemble rather than a single CFT.

      In the second half, I will discuss recent progress in constructing Euclidean wormholes in d>2 dimensional pure Einstein gravity. These configurations are also generalizations of the JT double trumpet, in particular they are not saddle points of the gravity action. They are instead “constrained instantons.” For fixed bottleneck size, we have shown that some of these wormholes are completely stable in Einstein gravity. These wormholes can be easily embedded into supergravity, in which they are generically unstable to brane nucleation. However, we find a class of wormholes with AdS-scale bottlenecks in EAdS_5 x S^5 supergravity which are stable against obvious potential brane instabilities. These wormholes may pose a factorization paradox for the duality between N=4 super Yang-Mills and IIB string theory on AdS_5 x S^5.

      Speaker: Kristan Jensen