ML4Jets2022

from Tuesday 1 November 2022 (08:00) to Friday 4 November 2022 (17:50)
Rutgers University (Multipurpose Room (aka Livingston Hall))

        : Sessions
    /     : Talks
        : Breaks
1 Nov 2022
2 Nov 2022
3 Nov 2022
4 Nov 2022
AM
08:00 Registration  
09:00
Welcome and Introduction - Ben Nachman (Lawrence Berkeley National Lab. (US)) Matthew Buckley (until 10:45)
09:00 Welcome from Local Organizers - Dean Thu Nguyen (Rutgers University) David Shih  
09:15 Experimental Opening I - Petar Maksimovic (Johns Hopkins University (US))  
09:45 Experimental Opening II - Tobias Golling (Universite de Geneve (CH))  
10:15 Theory Opening - Ian James Moult  
10:45 --- Coffee ---
11:15
Equivariance and New Architectures - Darius Faroughy (University of Zurich) Petar Maksimovic (Johns Hopkins University (US)) (until 12:35)
11:15 Does Lorentz-symmetric design boost network performance in jet physics? - Congqiao Li (Peking University (CN))  
11:35 Transformer models for heavy flavor jet identification in CMS - Sitian Qian (Peking University (CN))  
11:55 A Holistic Approach to Predicting Top Quark Kinematic Properties with the Covariant Particle Transformer - Shikai Qiu (Lawrence Berkeley National Lab. (US))  
12:15 Equivariant Neural Networks for Particle Physics: PELICAN - Alexander Bogatskiy (Flatiron Institute, Simons Foundation)  
09:00
Anomaly Detection - Dylan Sheldon Rankin (Massachusetts Inst. of Technology (US)) Elham E Khoda (University of Washington (US)) (until 10:45)
09:00 Introduction to Anomaly Detection - Dr Barry Dillon (University of Heidelberg)  
09:25 Results from Unsupervised Machine Learning in an ATLAS Dijet Resonance Search - Julia Lynne Gonski (Columbia University (US))  
09:45 A Normalized Autoencoder for LHC triggers - Luigi Favaro  
10:05 Robust anomaly detection using NuRD - Abhijith Gandrakota (Fermi National Accelerator Lab. (US))  
10:25 Challenges for unsupervised anomaly detection in particle physics - Katherine Fraser (Harvard University)  
10:45 --- Coffee ---
11:15
ML Keynote Talk - David Shih Dr Claudius Krause (Rutgers University) (until 12:40)
11:15 ML Keynote Talk -- Generative models, manifolds and symmetries: From QFT to molecules - Danilo Rezende  
11:55 Panel Discussion - Tilman Plehn Savannah Jennifer Thais (Princeton University (US)) Nick Dunn (Two Sigma) Jesse Thaler (MIT) David Shih Danilo Rezende  
09:00
Classification - Sung Hak Lim (Rutgers University) Prof. Cheng-Wei Chiang (National Taiwan University) (until 10:40)
09:00 Recent ML-usage in searches with boosted jets in CMS - Oz Amram (Johns Hopkins University (US))  
09:20 Constituent-Based Top-Quark Tagging with the ATLAS Detector - Kevin Thomas Greif (University of California Irvine (US))  
09:40 Adversarial training for b-tagging algorithms in CMS - CMS Collaboration (CMS Experiment, CERN) Annika Stein (Rheinisch Westfaelische Tech. Hoch. (DE))  
10:00 Truth tagging for efficiency parametrization of b-jets using Graph Neural Networks - Krunal Bipin Gedia (ETH Zurich (CH))  
10:20 Heterogeneous Graph Representation for Identifying Hadronically Decayed Tau Leptons at the High Luminosity LHC - Xiangyang Ju (Lawrence Berkeley National Lab. (US)) Andris Huang (University of California-Berkeley)  
09:00
Measurement - Eva Halkiadakis (Rutgers State Univ. of New Jersey (US)) Manuel Szewc (until 10:40)
09:00 Multi-differential Jet Substructure Measurement in High $Q^{2}$ Deep-Inelastic Scattering with the H1 Detector - Vinicius Massami Mikuni (Lawrence Berkeley National Lab. (US))  
09:20 Machine learning for top physics in CMS - Philip Daniel Keicher (Hamburg University (DE))  
09:40 ML Unfolding based on conditional Invertible Neural Networks using iterative training - Mathias Josef Backes (Universität Heidelberg)  
10:00 Moment Unfolding using Deep Learning - Krish Desai  
10:20 Invertible Networks for the Matrix Element Method - Theo Heimel (Heidelberg University)  
10:40 --- Coffee ---
11:10
Classification - Michael David Sokoloff (University of Cincinnati (US)) Johnny Raine (Universite de Geneve (CH)) (until 12:50)
11:10 Identification of hadronic tau decays using a deep neural network with the CMS experiment at LHC - Mykyta Shchedrolosiev (Deutsches Elektronen-Synchrotron (DE))  
11:30 Robust Signal Detection using a Classifier Decorrelated through Optimal Transport (CDOT) - Purvasha Chakravarti (University College London)  
11:50 VBF vs. GGF Higgs with Full-Event Deep Learning: Towards a Decay-Agnostic Tagger - Cheng-Wei Chiang (National Taiwan University)  
12:10 Machine learning based jet and event classification at the Electron-Ion Collider - James Mulligan (University of California, Berkeley (US))  
12:30 Search for dimuon events in IceCube using decision trees - Nakul Aggarwal (University of Alberta)  
11:10
Measurement - Jesse Thaler (MIT) Oz Amram (Johns Hopkins University (US)) (until 12:50)
11:10 Constraining quark and gluon jet energy loss distributions in quark-gluon plasma using Bayesian inference - Alexandre Falcão (University of Bergen)  
11:30 Estimating Uncertainties for Trained Neural Networks - Sebastian Guido Bieringer (Hamburg University)  
11:50 How can Bayesian networks be used for uncertainty quantification in particle physics? - Christina Peters (University of Delaware)  
12:10 Using Machine Learning to Improve our Understanding of the Jet Background in Nucleus-Nucleus Collisions. - Tanner Mengel (University of Tennessee)  
12:30 Loop Amplitudes from Precision Networks - Tilman Plehn  
09:00
Interpretability - Prasanth Shyamsundar (Fermi National Accelerator Laboratory) Savannah Jennifer Thais (Princeton University (US)) (until 10:40)
09:00 Infra-red and collinear safe Graph Neural Networks - Vishal Singh Ngairangbam  
09:20 Resilience of Quark-Gluon Tagging - Lorenz Vogel (ITP, Heidelberg University)  
09:40 Boost-Invariant Polynomials: an efficient and interpretable approach to jet tagging - Mr Jose Miguel Munoz Arias (EIA University)  
10:00 Learning to Identify Semi-Visible Jets - Taylor James Faucett (University of California, Irvine)  
10:20 Feature selection with Distance Correlation - RANIT DAS  
09:00
Reconstruction - Christina Peters (University of Delaware) Prof. Joel Walker (Sam Houston State University) (until 10:40)
09:00 Machine learning for particle flow at CMS - Dylan Sheldon Rankin (Massachusetts Inst. of Technology (US))  
09:20 Point Cloud Deep Learning Methods for Pion Reconstruction in the ATLAS Experiment - Piyush Karande (Lawrence Livermore National Laboratory)  
09:40 Particle reconstruction in jets with set transformer and hypergraph prediction architectures - Nilotpal Kakati (Weizmann Institute of Science (IL)) Etienne Dreyer (Weizmann Institute of Science (IL))  
10:00 Optimal transport solutions for pileup mitigation at hadron colliders - Fabio Iemmi (Chinese Academy of Sciences (CN))  
10:20 ν-flows: Conditional neutrino momentum regression - Mr Matthew Leigh (University of Geneva)  
10:40 --- Coffee ---
11:10
Interpretability -Dr Purvasha Chakravarti (University College London) Abhijith Gandrakota (Fermi National Accelerator Lab. (US)) (until 12:50)
11:10 Jet tagging with deep sets of subjets - Dimitrios Athanasakos  
11:30 Blueprints for Training Information Bottlenecks for Collider Analyses - Prasanth Shyamsundar (Fermi National Accelerator Laboratory)  
11:50 Weakly Supervised Learning for Muon Discrimination in Unlabeled Collider Data - Edmund Witkowski (UCI)  
12:10 Can You Hear the Shape of a Jet? - Rikab Gambhir (MIT)  
12:30 Neural Estimation of Energy Movers Distance - Ouail Kitouni (Massachusetts Inst. of Technology (US))  
11:10
Reconstruction - Julia Lynne Gonski (Columbia University (US)) Etienne Dreyer (Weizmann Institute of Science (IL)) (until 12:50)
11:10 Advances in developing deep neural networks for finding primary vertices in proton-proton collisions at the LHC - Michael David Sokoloff (University of Cincinnati (US))  
11:30 Graph Neural Networks for a Deep-learning based Full Event Interpretation (DFEI) at the LHCb trigger - Julian Garcia Pardinas (Universita & INFN, Milano-Bicocca (IT))  
11:50 Likelihood-Free Frequentist Inference for Calorimetric Muon Energy Measurement - Luca Masserano (Carnegie Mellon University)  
12:10 A boosted kNN regressor with 66 million parameters - Tommaso Dorigo (Universita e INFN, Padova (IT))  
12:30 Jet SIFT-ing - Joel Walker (Sam Houston State University)  
PM
12:35 --- Lunch ---
14:00
Equivariance and New Architectures - Chase Owen Shimmin (Yale University (US)) Tobias Golling (Universite de Geneve (CH)) (until 15:40)
14:00 Symmetries, Safety, and Self-Supervision - Peter Rangi Sorrenson (Universität Heidelberg)  
14:20 Transformer Architectures for Quenched Jet Tagging - Mr João Pedro de Arruda Gonçalves (LIP)  
14:40 Topological Data Analysis for Collider Events - Tianji Cai (University of California, Santa Barbara)  
15:00 Solving Combinatorial Problems in Multijet Signatures Using Machine Learning - Lawrence Lee Jr (University of Tennessee (US))  
15:20 Equivariant Point Cloud Generation for Particle Jets - Erik Buhmann (Hamburg University (DE))  
15:40 --- Coffee ---
16:10
Generative Models -- Particle Level - Marat Freytsis (Rutgers University) Tilman Plehn (until 17:50)
16:10 Particle Cloud Generation - Raghav Kansal (Univ. of California San Diego (US))  
16:30 Point Cloud Generation using Transformer Encoders and Normalising Flows - Benno Kach (Deutsches Elektronen-Synchrotron (DE))  
16:50 Conditional generative networks for pure quark and gluon jets - Ayodele Ore  
17:10 Modeling Hadronization with Machine Learning - Manuel Szewc  
17:30 MadNIS: Neural networks for multi-channel integration - Ramon Winterhalder (UC Louvain)  
18:15 --- Reception ---
12:40 --- Lunch ---
14:15
Generative Models -- Detector Level - Kevin Pedro (Fermi National Accelerator Lab. (US)) Ramon Winterhalder (UC Louvain) (until 16:00)
14:15 Introduction to Generative Models for Fast Detector Simulation - Dr Claudius Krause (Rutgers University)  
14:40 AtlFast3, the new ATLAS fast simulation tool - Michele Faucci Giannelli (INFN e Universita Roma Tor Vergata (IT))  
15:00 CaloFlow for CaloChallenge - Yi En Ian Pang Ian Pang (Rutgers)  
15:20 Score-based Generative Models for Calorimeter Shower Simulation - Vinicius Massami Mikuni (Lawrence Berkeley National Lab. (US))  
15:40 CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds - Jesse Cresswell (Layer 6 AI)  
16:00 --- Coffee ---
16:30
Generative Models -- Detector Level -Dr Claudius Krause (Rutgers University) Michele Faucci Giannelli (INFN e Universita Roma Tor Vergata (IT)) (until 18:00)
16:30 Generative Models for Fast Simulation of Electromagnetic and Hadronic Showers in Highly Granular Calorimeters - Sascha Daniel Diefenbacher (Hamburg University (DE))  
16:50 Fast calorimeter simulation with VQVAE - Chase Owen Shimmin (Yale University (US))  
17:10 IEA-GAN: Intra-Event Aware GAN with Relational Reasoning for the Fast Detector Simulation - Dr Nikolai Hartmann (LMU Munich) Hosein Hashemi (LMU Munich)  
17:30 Discussion  
12:50 --- Lunch ---
14:00
Anomaly Detection -Dr Barry Dillon (University of Heidelberg) Lawrence Lee Jr (University of Tennessee (US)) (until 15:40)
14:00 CURTAINs for your Sliding Window: Constructing Unobserved Regions by Transporting Adjacent INtervals - Johnny Raine (Universite de Geneve (CH))  
14:20 Generative Models for Resonant Anomaly Detection - Elham E Khoda (University of Washington (US))  
14:40 HEP-Sim2Real: creating background templates with normalizing flows - Radha Mastandrea (University of California, Berkeley)  
15:00 Weakly supervised methods for LHC analyses - Thorben Finke  
15:20 Resonant anomaly detection without background sculpting - Manuel Sommerhalder (Hamburg University (DE))  
15:40 --- Coffee ---
16:10
Beyond Jets - Mariel Pettee (Lawrence Berkeley National Lab. (US)) David Shih (until 18:10)
16:10 Overview of ML for Gravitational Waves - Eric Anton Moreno (Massachusetts Institute of Technology (US))  
16:40 Overview of ML for Gaia - Matthew Buckley  
17:10 Overview of ML for Astro/Cosmo - Miles Cranmer (Princeton)  
17:40 Overview of ML for Neutrinos - Fernanda Psihas (Fermi National Accelerator Laboratory)  
19:00 --- Conference Dinner ---
12:50 --- Lunch ---
14:00
Anomaly Detection - David Shih Yuri Gershtein (Rutgers State Univ. of New Jersey (US)) (until 15:20)
14:00 Anomaly detection in a perspective of interdisciplinary research - Taoli Cheng (University of Montreal)  
14:20 Optimal Mass Variables for Semivisible Jets - Kevin Pedro (Fermi National Accelerator Lab. (US))  
14:40 Neural Embedding: Learning the Embedding of the Manifold of Physics Data - Sang Eon Park (Massachusetts Inst. of Technology (US))  
15:00 Hunting for signals using Gaussian Process regression - Abhijith Gandrakota (Fermi National Accelerator Lab. (US))  
15:20 Closing - David Shih Manuel Sommerhalder (Hamburg University (DE))